🔧 Двигатель с турбонаддувом. Турбо или атмо, кто быстрее? С тех пор, как начали появляться первые турбины на тюнингованных автомобилях, возникает вопрос — кто быстрее, автомобили с турбонаддувом или атмосферники с большими распредвалами? Ответ однозначен — правильно собранный турбо мотор не оставит никакого шанса самому "злому атмо". Самый мощный атмосферный двигатель на данный момент применяется в боллидах Формула-1, с одного литра объёма двигателя снимается около 300 л/с. Для примера: правильно собранный турбо мотор выдаёт до 900 л/с с литра объёма, при наддуве 5,5 атмосфер. Такие моторы применялись на Формуле-1 во времена турбо-эры с 1977 по 1988 г, с мотора объёмом 1,5 литра снимали от 700 до 1400 л/с. Подобные моторы сейчас применяются в драг рейсинге класса "top fuel" в США, с мотора объёмом 8,2 литра снимается 7000 л/с. От куда же берутся эти лошадиные силы? Ведь обычный мотор внутреннего сгорания имеет около 60 л/с с литра. Обычный мотор расчитан на езду в городских условиях, с крутящим моментом на низких оборотах. Такая компоновка имеет свои ограничения в максимальной мощности и скорости. Цилиндры двигателя имеют огромный потенциал для увеличения мощности без увеличения объёма двигателя. На сколько можно повысить мощность двигателя с помощью турбины? При увеличении наддува на 1 атмосферу, мощность увеличивается примерно на 100%. То есть если двигатель имел изначально 100 л/с, то при давлении турбонаддува 3 атмосферы (3 бар), его мощность возрастёт до 300 л/с. Естественно двигатель должен быть подготовлен к такой нагрузке: резко возрастает тепловой режим работы мотора — повышается температура клапанов, поршней, масла, охлаждающей жидкости, выпускной системы. Эти элементы должны быть доработаны к условиям возросшей температуры. Возрастает нагрузка на поршни, шатуны, коленвал, блок двигателя, сцепление, трансмиссию. Эти элементы автомобиля должны быть подобраны в соответствии с возросшей мощностью. Степень сжатия на турбо моторах должна быть уменьшена в зависимости от давления наддува. На самом деле высокая степень сжатия с использованием высокооктанового топлива даёт не такую уж большую прибавку мощности, как разница в цене на топливо. При увеличении степени сжатия на единицу — мощность возрастает примерно на 1,5%. Конечно существует топливо с октановым числом 150 — метиловый спирт. Его использование на атмосферном двигателе позволяет применять степень сжатия 1:15, но прибавка мощности с высокооктановым топливом слишком несущественна. Так что не нужно скупиться на уменьшении степени сжатия на турбо моторах, и в моторах с закисью азота. На мощных турбо моторах степень сжатия находится в пределах 7-8, в зависимости от применяемого топлива. Детонация очень разрушает мотор, так что лучше меньше, чем больше. Турбины ТКР. Турбины произведённые в России и странах СНГ имеют обозначение — ТКР. Существует несколько типов, которые отличаются размерами и производительностью, а так же КПД от 43 до 77%. Они используются на дизельных двигателях разной мощности, серийное применение на бензиновых двигателях данных турбин пока отсутствует. Возможно ли применение турбин ТКР на бензиновых двигателях? Да возможно. Не сгорят ли лопасти турбины, предназначенной для дизельных двигателей, на бензиновом моторе, ведь температура горения бензина выше чем солярки? Случаев сгорания лопастей турбины от дизеля на бензиновом двигателе в практике не обнаружено. Температура выхлопных газов прежде всего отдаётся поршням, клапанам, блоку цилинров, выпускному коллектору, и только потом — турбине. Турбины Garrett. Широкое распространение в использовании на серийных дизельных и бензиновых двигателях получили турбины Garrett, которые производятся на 14 заводах по всему миру. Они так же активно используются в автоспорте и тюнинге. Имеются турбины Garrett не только с подшипниками скольжения (бронзовые втулки) как на ТКР, но и с шарикоподшипниками, которые имеют обозначение с буквой "R", например GT42R. Шарикоподшипники менее чувствительны к масляному голоданию, повышенным оборотам, имеют меньшее трение, и соответственно быстрее раскручиваются. Так же имеются турбины с каналом для охлаждения подшипника с помощью охлаждающей жидкости, что благоприятно сказывается на их сроке службы. Расход воздуха турбинами и степень повышения наддува. Каждая турбина имеет определённую производительность накачки воздуха. Максимальное давление наддува получается на оптимальных оборотах ротора, превышать которые не стоит, иначе пострадает подшипник турбины. На данной схеме показана производительность турбин ТКР. Для примера: расход воздуха 0.10 кг/с равняется 130 л/с мощности двигателя. К примеру турбина ТКР-6, которая применяется на машинах типа "Бычок", "Валдай", выдаёт максимально 150 л/с. На ТКР-6 диаметр компрессорного колеса 60 мм, а на ТКР-10 соответственно 100 мм, это видно из маркировки турбин. На данной схеме представлен расход воздуха турбин Garrett в фунтах/мин и степень повышения давления (атм). vk.com/autobap Расход воздуха 50 фунтов в минуту равняется примерно 410 л/с конечной мощности двигателя. Турбину для тюнинга стоит выбирать с запасом, что бы она работала не на пределе своей производительности. У больших турбин немного больше турболаг (провал), но у них гораздо больший потенциал конечной мощности по сравнению с маленькими турбинами. Маленькая турбина при достижении своего пика прекращает повышать мощность двигателя, и стравливает выхлопные газы в обход крыльчатки (при наличии клапана вестгейт), или разрушается, при отсутствии клапана. Клапан вестгейт (Wastegate). Обходной клапан вестгейт служит для защиты подшипника турбины и двигателя от разрушения. Поток выхлопных газов старается раскрутить крыльчатку до бесконечности, тем самым нагнетая всё больше и больше воздуха в двигатель. Соответственно воздух увеличивает количество рабочей смеси, увеличивая поток выхлопных газов. Турбина раскручивается ещё быстрее. Получается замкнутый цикл. Если этот цикл не остановить, турбина набирает обороты гораздо больше максимальных 100000 об/мин, и подшипник приходит в негодность. Получается люфт, и крыльчатка начинает задевать о корпус турбокомпрессора, мгновенно изнашиваясь. Так же от неконтролируемого повышения мощности может пострадать двигатель. Обходной клапан бывает двух видов: встроенный и внешний. Встроенный крепится прямо на турбине, и имеет заслонку, которая отводит часть выхлопных газов, при достижении определённого давления, в обход турбины, в глушитель. У него ограниченные возможности, он не может отводить слишком большой поток выхлопных газов. Внешний клапан выполняет те же функции, но крепится на выпускном коллекторе. При достиженнии заданного давления компрессора, открывается, и начинает стравливать выхлопные газы с выпускного коллектора, в обход турбины — в глушитель, не позволяя раскручиваться турбине больше положенного. #Статьи@autobap Подпишись и следи за обновлениями: vk.com/autobap